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A model for an interface with localized adsorption is presented, in which the 
surface has a distribution of sticky adhesive sites in contact with a Coulomb 
fluid. Contrary to the current literature on the electrical double layer the surface 
charge is in dynamic equilibrium with the bulk fluid. The sum rules obeyed by 
the one- and two-body correlation functions are investigated. Explicit results are 
obtained for a solvable model, the two-dimensional one-component plasma at 
reduced temperature 2. The effect of the granularity of the adsorbed charge on 
the adsorption isotherm is discussed. 

KEY WORDS:  Localized adsorption, Coulomb systems; one-component 
plasma; two dimensions; electrical double layer; sum rules. 

1. I N T R O D U C T I O N  

When a solid material such as an electrode plate or a colloid particle is in 
contact with an electrolyte solution or a plasma, it can acquire an electrical 
charge by specific adsorption of ions. This adsorbed surface charge 
modifies the distribution of the ions and the molecules in the vicinity of the 
surface and induces a surface potential. In the case of chemisorbed systems 
(or strong physisorption) the adsorbed ions are localized on adsorption 
sites with a distribution which reflects in some way the structure of the 
adsorbent, as for instance a periodic lattice. It is not an easy task to include 
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this surface charge which is in dynamic equilibrium with the electrolyte in a 
statistical mechanical treatment of the interface. For this reason, in almost 
all works devoted to the study of Coulomb systems near a wall, the surface 
charge is a prescribed "external" charge, uniformly distributed on the 
wall. ~ In particular, the adsorbed charges cannot "react" to the bulk 
system. 

In the present paper, we give an exact solution to a two-dimensional 
model of the true adsorption problem. The Coulomb fluid is the classical 
one-component plasma (OCP) at the special temperature T for which the 
coupling constant F =  fie 2= 2, fl = (ke T)-1 ,  and the specific (short range) 
adsorption potential is the sticky potential of Baxter/2) 

The one component plasma is the simplest model of a Coulomb fluid 
and recently various physically interesting inhomogeneous situations have 
been worked out exactly in two dimensions for F =  2. (3q~ They are restric- 
ted, however, to the case where the background density or the external 
potential varies only in one direction. 

We shall consider here the following three situations: (i) a semi-infinite 
plasma in the vicinity of an impenetrable wall (i.e., a line) with continuous 
adsorption; (ii) an infinite plasma in the vicinity of discrete adsorption sites 
regularly spaced on a line; (iii) a semi-infinite plasma in the vicinity of an 
impenetrable wall with discrete adsorption. 

While (i) is a simple extension of the results obtained in Referen- 
ces 3-5, (ii) and (iii) are real two-dimensional problems and the structure 
of the fluid (for instance, the one- and two-body distribution functions) will 
vary both in the directions perpendicular and parallel to the line of sites. 

The method that we use for solving this problem involves infinite 
expansions in terms of the n-body correlation functions of the unperturbed 
fluid (i.e., without adsorption sites). While this solution is valid for any 
fluid subject to an external one-body potential of Baxter's type, this is so, 
however, only in a formal sense since the n-body correlation functions are 
generally unknown quantities. The two-dimensional OCP at F =  2 is a rare 
exception: the gaussian structure of the correlation functions ~4,n) makes the 
infinite expansions summable. 

Our formal method of solution is described in Section 2 where, for the 
sake of simplicity, we restrict ourselves to the case of the two-dimensional 
OCP, but the generalization to any multicomponent fluid in two or three 
dimensions is immediate. We consider there also the sum rules that should 
be satisfied by a charged system. 

In Section 3 we give the solution of case (i), using the direct method 
introduced by Jancovici (3'4) and we discuss the effect of the nature of the 
surface charge (a prescribed external uniform charge against an adsorbed 
surface charge). 
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In Section 4, we work out the exact solution of case (ii) and consider 
some limit situations where it reduced to already known results. Finally, in 
Section 5, we give the solution of case (iii). 

2. M E T H O D  OF S O L U T I O N  

We consider a two-dimensional system of classical particles of charge e 
and bulk number density p, embedded in a neutralizing uniform 
background of charge density - e p .  The system is semi-infinite, confined to 
the half-space x > 0. The particles interact through the Coulomb potential 

v(r) = - e  2 In -r (2.!) 
L 

where L is an irrelevant scale length. 
The adsorption sites are located on the line x = Xo and are regularly 

spaced with a linear density co. 
Following earlier work <12'13) we model the adsorption potential 

ua(r--R),  created at r by the site located at R, by the sticky potential of 
Baxter ~2) 

e x p [ - f l u a ( r  - R)]  = 1 + 2 6(r - R) (2.2) 

where 6(r) is the Dirac delta function. The positive constant )~ measures the 
strength of the adsorption and the delta function mimics the short-range 
nature of a specific adsorption potential. As we shall see later, this is 
equivalent to assigning a fugacity 2 to the site B. We note that since the 
Coulomb potential becomes infinitely repulsive when r goes to zero, we 
expect that for a given 2 the number of particles adsorbed on a site is 
smaller than one. 

As mentioned earlier, we shall consider three cases: (i) and (iii) corres- 
pond to the limit Xo =0 ,  respectively, in the continuous (co-~ oo, 2 ~ 0 
such that 2co goes to a finite value) and discrete version; (ii) correspond to 
the limit Xo ~ 0o (i.e., the line of sites is located in the bulk plasma). 

2.1. The  Free Energy and the  Dens i ty  of  Adsorbed  Part ic les 

Although we seek the free energy and the distribution functions of the 
(semi) infinite system, we first consider a finite system of N particles and M 
sites in a volume A. This could be, for instance, a system of circular sym- 
metry as in Ref. 3, 4, e.g., a disk of radius R ( N =  7rpR 2) with the sites 
located on the circle of radius Ro ( M =  2rcRoco). We do not need, however, 
to specify the geometry of the system in what follows. 
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The canonical partition function is 

Z N ~- e -~V~ 1 q- t E (~(ri- Rm) dri (2.3) 
�9 i = l  r n ~ l  

where V ~ is the potential energy of the unperturbed system (without 
adsorption sites, i.e., 2 = 0) and Rm is the position of site m. 

Expanding the product in the integrand, we can rewrite ZN in a more 
illuminating way 

Z N  = E ~o--flVO(Rml,Rm2,---,Rms, rs+l "'" rN) d r s +  1 ' "  d r u  (2.4) (U- {s} 

~-,ml,m2...ms= I' The coefficient of where Z{s} is a simplified notation for ~s  M 
2 s corresponds to the sum over all the configurations where s particles are 
adsorbed. For instance, the term of the expansion corresponding to s = 2 is 

L Z(~) = ~ 2 ( N -  2)! e-aV~ ru) dr3"" dr N 
ml,m2 

(2.5) 

It is clear from (2.4) that 2 can be identified (up to a multiplicative 
constant) with the fugacity of the adsorbed particles with the average num- 
ber of adsorbed particles ( N a )  given by 

In Z jr 
( N a )  - ~ l n ~  (2.6) 

This also suggests that there should be the equivalent of a "compressibility" 
sum rule for the adsorbed particles (see Section 2.3). 

Introducing in (2.4) the n-particle distribution functions of the unper- 
turbed system defined as usual by 

P(~ l---~ ;-~ e-/~v~ (2.7) 

with Z~ = ZN(I~ = 0),  Z N can be written as 

= z % E T., Rm '" 
{ ~ }  �9 

(2.8) 

Since p(o s) vanishes when any of the arguments coincide, we need consider 
only cases when there is no multiple occupancy of any site. One goes from 
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Z N / Z  0 t o  its logarithm by replacing the distribution functions by their con- 
nected parts. This gives 

ZN ~ )s T~ ~ (2.9) ln~-g-- L 7 
N S ~ > I  " 

where TfO) -~--- ~.~ml,m2M ... m s = 1 p ( o S ' T ) ( a m l ,  Rm2 " " ams ) and the truncated n-body 
correlation functions are defined as usual 

p~o~'~)(rl) = po(rl) 

p~02'T)(rl, r2)= p~o2)(rl, r 2 ) -  po(rl) po(r2) (2.10) 

p~o3'T)(rl, r2, r3) = p~o3)(rl, r2, r3) -- p~o2)(rl, r2) po(r3) . . . .  

The excess free energy of the system (compared to the free energy of 
the unperturbed system) is given by 

ZN 
AF= - -k ,  Tln~uu = - k B T  ~ 1 ~. T~. ~ (2.11) 

and since the number of sites is proportional to some "area" A (for 
instance 2~Ro in the circular geometry) and not to the "volume" A of the 
system, we expect that 3F/A tends to a finite limit Jf~ in the ther- 
modynamic limit (N, M, A ~ oo; p, ~o fixed). We shall not discuss here the 
problem of proving the existence of this limit or of the convergence of the 
infinite expansion in the r.h.s, of (2.11) or in similar expressions. We shall 
simply assume that the "surface" properties have a well-defined limit. From 
(2.6) and (2.11) the average number of adsorbed particles is 

OAF 
( N a > = - / / 2  a2 

2 s 
= • ( s -  1)------7 v~~ (2.12) 

s ~ > l  

and in the thermodynamic limit (Na} /M will tend to a finite number na, 
the average number of adsorbed particles per site, with na ~< 1. 

2.2. The One- and  T w o - B o d y  D e n s i t i e s  

The n-body distribution functions of our system are defined by 

p(')(rl,..., rN): (N--  n)! Z e~V~ I-[ 
i 

m 

(2.13) 
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They can be also expressed in terms of the distribution functions of the 
unperturbed system, by expanding the product in the integrand of (2.13). 
This will contain a continuous part (i.e., without delta functions) which 
corresponds to the distribution of the nonadsorbed particles and a singular 
part corresponding to the adsorption of at least one particle. 

We shall only consider the one- and the two-body densities. We see 
immediately from (2.13) that p(rl) has the form 

p ( r l ) = I 1  + 2 ~ 6 ( r l - R m ) ] p * ( r l )  (2.14) 
m 

where the continuous part p*(r~) is given by 

As 
p*( r l )=po( r l )+  ~ ~ T~ j) 

s~>l 
(2.15) 

where 

M 
Z 

ml,m2,...,ms= 1 
p(o ~+ l'r)(rl, Rm~ ..... Rm,) 

The average number of adsorbed particles is given by the integral of the 
singular part of p(r~) 

(Na)  = )~ f~ ~ •(rl-  Rm) p*(rl) dr1 (2.16) 
m 

so that we have, in the thermodynamic limit, the exact relation 

na=,~p*(Rm) (2.17) 

which relates the average density of adsorbed and nonadsorbed particles at 
one site. A similar result was given in Refs. 12, 13 where the specific ionic 
adsorption on a wall is treated in the hypernetted-chain (HNC) 
approximation. 

Note also that (2.14) and (2.16) give, in the finite system 

N =  <Na> +fA P*(rl) dr1 

which cai1 also be written (since N =  pA) as 

(2.18) 

fA [p*(][ ' l )  - -  p ]  d r  1 -~ - - ( N a >  (2 .19)  
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The truncated two-body density can be written as 

pr(rl,r2)=II+2~(rj-Rml)][l+2~6(r2--Rm2)lP*(rl,r2) (2.20) 
ml m2 

where the continuous part p*(r~, r2) is given by 

2" 
p*(rl, r2)=p~o2'r)(r~, r2)+ ~ ~. p~+2'V)(rl, r2, Rm,,..., Rm,) (2.21) 

{s} 
s~>l 

The truncated correlation function between two adsorbed particles (i.e., the 
coefficient of the product of the two delta functions in (2.21)) satisfies the 
relation (similar to (2.17)) 

Rr(Rm~, Rm2 ) = 22p*(R,~l, Rm2 ) (2.22) 

Noting that p(2)(r~, r~)=0, we must have 

Rr(R,,, Rm)= - n  ] (2.23) 

2.3. Sum-Rules and the Decay of the Correlations 

We know from Ref. 14 that, in Coulomb systems, the one- and two- 
body correlation functions satisfy in the thermodynamic limit a set of sum 
rules (multipole sum rules) whenever there is good asymptotic decay of the 
correlations. If the adsorption sites are located in the bulk phase, we can 
expect a fast decay (i.e., nonalgebraic) of pr(rl ,  r2) in all directions, similar 
to the behavior of the correlation functions of the unperturbed system. The 
situation is more delicate in the vicinity of a wall (cases (i) and (iii)) where 
p~oZr)(r~, r2) decays only as ( Y l -  Y2) -2  (in two dimensions) in the direc- 
tion parallel to the wall. (4) (Note, however, that 

. p~o2,T)(x, = o, xe  = o, y )  dy  or  p~o2'T)(R~, Rm 2) 
ml ,m2 

is still defined.) We shall, therefore, assume in general only the existence of 
the perfect screening sum rule 

f pr(r, ,  r2) dr2 = -p ( r l )  (2.24) 
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which, using (2.19) and (2.20), implies 

f dr2 p~(rl, r2) + A ~ p~(rx, Rm) = -p*(rl)  
m 

~" f dr2 P~(arn' r2) -{- Z RT(Rm, Rml) = --ha 
ml 

(2.25a) 

(2.25b) 

Because of Eqs. (2.17) and (2.22), (2.25b) can be readily deduced from 
(2.25a). 

Finally, Rr(Rml, Rm~) should satisfy another sum rule which is the 
equivalent of the compressibility equation for homogeneous systems. It can 
be easily deduced from (2.4) where 2 plays the role of the fugacity of the 
adsorbed particles. In the finite system we have 

O(Na> (2.26) ( N ] > -  (Na>2=2  S---T- 

and the normalization 

E RT(Rml, Rm~)= (N2a) - (N~) 2 -  ( N . )  
ml,m2 

(2.27) 

Then in the thermodynamic limit 

01"l a 

E RT(Rm' Rml) ---- 2 - ~ "  --  na 
ml 

fli~ 2 02zlf s 
co 022 

(2.28) 

This relation unlike (2.25) is not restricted to Coulomb systems. But if 
(2.25) holds we get also 

0/7a (2.29) f dr2 P*(rl '  r2) = 82 

or, using (2.17), (2.22), and (2.25a) 

fl 02Af S 
p~(R~, Rm, ) = co 0~ 2 ml 

Op*(Rm) 

82 
(2.30) 
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3. C O N T I N U O U S  A D S O R P T I O N  ON A W A L L  (F---.2) 

All the results of the preceding section remain valid when the density 
of the adsorption sites increases indefinitely (o) --, oo). However, in order to 
get finite quantities we must at the same time take the limit 2 --* 0 such that 
2~o ~ 2c finite. We then have a "continuous" adsorption on the line x = xo 
and all the sums over the sites must be replaced by integrals along the line. 
Thus, the one-body density for the nonadsorbed particles is now 

2Sfp(oS+l'T)(rl, r2 ..- r~+l) p*(x I --Xo)=pO(X 1 --X0)+ ~.. 
s = l  

x 3 ( x 2 - x o ) " . 3 ( x ~ + l - x o ) d r 2 " " d r , +  1 (3.1) 

and depends only on X l -  xo since the adsorption potential varies only in 
the x direction. The density of adsorbed particles on the line is 
v a = lim . . . . .  ~ ~ o(cona). 

We shall now consider situation (i) (Xo=0) where the line of 
adsorption coincides with the boundary of the semi-infinite system. The 
case Xo ~ oo (continuous adsorption in the bulk phase) will be treated in 
the next section as a limit of situation (ii). 

At F = 2  we know from Jancovici (4) how to compute the n-body 
correlation functions of the unperturbed semi-infinite system�9 It is, 
however, much easier to calculate directly by Jancovici's method the 
properties of the system with adsorption, since the problem is only one 
dimensional. As in Ref. 4 we start with a finite disk of radius R and 
represent ri by a complex number in polar coordinates. The canonical par- 
tition function is now 

Zs=IIAe-aV~ (3.2) 
�9 i 

Expanding the Boltzmann factor in terms of a Vandermonde determinant 
and performing the angular integration we get 

~ -- R 2 0 2 1 +  1 "l N I 2 ~ c  ~ l " a  

ZN = Z ~  l--[ 1 +  a 7 ( / + I , R ~ ) J  (3.3) 
l = 0  

where a = (gp)-1/2 is the mean interparticle distance and Ra = R/a. 

7(l + 1, R~) = t ~2~ e-"u ~ du 
~o 

(3.4) 

822/44/1-2-11 
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is the incomplete gamma function. The excess free energy is 

N--1 I 2,~,c R2al+le -R2a-] AF= -kaT  ~ In lq  (3.5) 

In the limit of the plane hard wall (R ~ oe) it can be shown as in 
Ref. 4 that the dominant values of l in the sums are close to RE and the 
incomplete gamma function can be replaced by its asymptotic form 

E y ( l+ l ,R] )=~)  Raexp[-l+lnl] l + q ~ ( t ) + 0  (3.6) 

where t= (R]-l)/Ra xf2 and ~( t )  is the error function 

q~(t)=~f:exp(-u2)du (3.7) 

Then, in this limit 
21+ 1 R a e R2a e -t2 

y( l+  1, R 2) * 1 + ~( t )  (3.8) 

and the sum upon l can be replaced by an integral upon t. The surface 
excess free energy AF/2zrR tends to the finite value 

[ e'2] 
Af~=-knT(p/2rc)mlo In l + 2 2 c x / ~ l + ~ ( t ) j d t  (3.9) 

The surface density of adsorbed particle is given by a relation similar 
to (2.6) or (2.12) 

va= -fl2c ~3Af" 22cp ~ ;  e -#  dt (3.10) 
O2c =-~--~ 1 + {/}(t) + 22c X / ~  e-'2 

Equation (3.10) gives an adsorption isotherm relating the surface charge 
density a~ = eVa to the bulk density p and to the strength of the adsorption 
2~. For this two-dimensional model the relevant dimensionless parameter is 
);cp 1/2~ 2c/a. At low coverage (2~ ~ 0) we obtain at once 

a~ = eA~Po(0) 

o r  

p - 1/2a~ = e2c p 1/2 In 2 (3.11 ) 

where po(0) is the contact value of the one-body density in the absence of 
adsorption.(3) 
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In the strong adsorption limit (2~ ~ oo ) we must be more careful with 
the integral in (3.10). First we break up the integral into 

f] ~ dt + "'" +fro dt . . . .  where t g = l n ( 2 2 c , ~ )  

The second integral is bounded above by 

-- t 2 % ~  

I ~ e 1 § 
o 1 + ~(t--------) dt = - In 2 2 

t 2 
which goes to 0 like e -  0/4to when to ~ oo. The first integral diverges like 
to/22c xf2p. Therefore, we have 

p -1/2~ a ~ e ln(22c ~ )  (3.12) 

which shows that the adsorbed surface charge density will not saturate. 
This is clearly related to the fact that we are considering point particles, 
without any excluded volume interactions in the adsorbed layer. It is 
interesting to note that a linear theory such as the Mean Spherical 
approximation (MSA) would give a saturation effect even in the limit of 
point particles: ~ this is obviously an artifact of the linearization. ~ 

The one- and two-body densities can be calculated as in Refs. 3, 4. We 
find 

e (t-x/a,fS)2 
P * ( x ) = P - ~ f o  l + ~ ( t ) + 2 2 c x / ~ e  -~dr (3.13) 

and 

p*(xl ,  x2, y) = -p2e (~-x2)/~2 

I ( // Xl § X2"~2 .. % ~  [2 
-- t . . . .  t r y -  2 "expt t 

• - -~ fo  l + e ( t ) + 2 2 c ~ 2 p e  t (3.14) 

where y = ym-  Y2. These results can be also derived from the expressions 
given in Reference 9. We readily see that 

~o = ,L p*(0) (3.15) 

while the truncated correlation function between two adsorbed particles is 
given by (see Eq. (2.22)) 

RT(y) - - ,2  , -- Zcpr(0, 0, y) (3.16) 
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Introducing a convergence factor exp(-3x)  we can also easily check the 
global electroneutrality relation 

Io~ [p*(x) - p]  dx = -va  (3.17) 

The perfect screening sum rule (2.24) and the "compressibility" relations 
(2.28), (2.29), or (2.30) also follow. By an analysis similar to that of 
Jancovici 14) we find that the correlations along the wall decay only a s  y-2 
when y ~  ___oo for fixed values of xl and x2. This suggests that the 
polarization cloud induced by a charge e located near the wall has a finite 
electrical dipole moment in the direction normal to the wall. Indeed we can 
check that 

fx (X2 --  x l )  PT(XI' x2, y) dr2 
2>~0 

1 x / - ~ e  -2~px~ 

= 2re 1 + 22c x / ~  I-1 + 2c3(xl)] (3.18) 

o r  

2>0 2>0 

_ 1 x ~  (xl >~0) (3.19) 
2zc 1 + 22c x / ~  

Another quantity of interest in the electrical double layer theory is the 
surface potential 

f? #1(0) = - 2 ~ e  x [ p ( x ) - p ]  dx 

-- - 2 ~ e  x [ p * ( x )  - p] dx (3.20) 

(where we have taken ~0(oo)= 0). Introducing again a convergence factor 
exp(-6x)  we find after some manipulations 

#J(0)=e{ ~ + � 8 9  1 2  (3.21) 

It is interesting to compare this result with that obtained when the sur- 
face charge aa is not an adsorbed charge but a smeared out charge density 
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on the wall, i.e., one which is rigid and not free to move and exchange with 
the charges in the system. We recall that this is a common assumption in 
the electrical double layer theory (~) and leads to the results ~5) for 0~g~d = Or 

O,.(O)=eI�88189 (3.22) 

For small surface charge (i.e., low coverage) we obtain, using (3.11) and 
(3.21) 

O(O)/e=�88 i n 2  + ' (3.23) 

while (3.22) yields 

0r(0)/e = ~ -  �89 in 2 - 2vaa ~ + "'" (3.24) 

The corresponding differential capacitances at aa = 0  (potential of zero 
charge) defined by C - 1 =  -O~,(O)/O(a,~a) are, respectively 

In 2 
C - ~ - s  (3.25a) 

1 
Cr - - -  (3.25b) 

On the other hand, for high surface charge ()~c ~ oo) we obtain 

0(0)/e ~ 0r(0)/e ~ (Gate) 2 (3.26) 

where we have used (3.12). 
These results are not unexpected: it is clear that the effect of the nature 

of the surface charge must be more pronounced at low coverage. In other 
words, the approximation which replaces the adsorbed surface charge by a 
uniform external charge is better when the density of the adsorbed particles 
increases. 

We can also treat the case where the surface carries both an adsorbed 
charge a~ and a rigid surface charge G.  ~ts~ The preceding expressions for 
A "  rf, G, p*(x), and p*(xl, x2, y) are then modified in the following way: 
the lower limit of the integrals upon t is --gffr(a ~ / e )  instead of 0. (see 
Ref. 4 for a similar calculation.) 

We then have a sum rule similar to that of Blum et al. (~6~ 

Op*(xl, ~r) 
[1 +2eft(x1)] = -2~fle2 [ (x2-x l )pr (x l , x z ,  y) dr 2 ~G "Jx 2 ) 0  

(3.27) 
which reduces to (3.18) when G = O. 
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4. A D S O R P T I O N  ON A LINE OF DISCRETE SITES ( I ' = 2 )  

We now consider the case of an infinite two-dimensional plasma in 
which are embedded attractive sites regularly spaced on a line with a den- 
sity co (case ii)). 

4.1. The Free Energy and the Density of Adsorbed Particles 

For the finite unperturbed system in circular geometry the n-body dis- 
tribution functions are given by Jancovici: (3) 

p(0n)(rl, r2 ..... rn)=p~exp(-~  z~tDet[KN(ZiZj*)]i,j=~...~ (4.1) 
\ ] i=1 

where Zi--- zg exp(iOg), z~ = rja and 

(z,z*)' 
KN(Z,Z*) = ~ 7(l+ 1, N) (4.2) 

/=0  

In the thermodynamic limit KN(Z~Z*)~exp(Z~Z*) and Jancovici has 
explicitly calculated the 1, 2, 3, and 4 body distribution functions. Intro- 
ducing the truncated correlation functions defined by (2.10), we have 

p(o2,r)(rl, r2 ) = _p2 exp( - zrpr~2 ) 
p(o 3' ~)(rl, r2, r3) = 2p 3 exp[ -zcp(r22 + r~3 + r~1)/2 ] cos[2~p(A123)] 

= _ + r23 + r34 + -2p 4 exp y ( G  2 dl) 

+ exp - -~- (r~2 + r~4 + r13 + r~) 

+ exp - -~- (r~3+r~2+r~4+r243) 'cos[2rcp(A1234)] 

(4.3) 

where r;j= ]r i-r j]  and A123~ (A1234) i8 the area of the polygon formed by 
the vertices 1, 2, 3 (1, 2, 3, 4). 

For the higher order functions it can be shown that all the Gaussian 
factors have the same "circular" structure { 12, 23, 34 ..... nl } and one has to 
sum over all the nonequivalent cycles. The argument of the cosine is related 
to the area of the polygon formed by the particles (1, 2, 3 " "  n) and it is 
clear that the calculation of this area becomes a formidable task when n 
increases. 
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Fortunately, in order to compute the excess free energy due to the 
adsorption (Eq. (2.11) we only need to know the truncated functions when 
the n particles are located on the sites. Since all the sites are equivalent and 
aligned, we find easily that 

T~~ ( -  1)s- l(s - 1)!p s y '  e -t[(ml-m2):+(m2-m3?+ "'" + ( m s - - m l ) 2 ] ( S ~  2) 
m l , m 2  �9 �9 �9 m s  

(4.4) 

where t =  17rp/co 2. For a large system these sums are proportional to the 
length L of the line (M = coL) and by a change of variable we obtain 

1 
Z ~-~0)~ (__ 1)s-- I(S - 1)r 

" P S o )  E e-t[m2+m~+ " '"  + m 2 s _ l + ( m t + m 2 +  " +  . . . .  l) 2] (4.5) 
m l , m 2  "" �9 m s  1 

where mi ~ 
Consider now the Jacobi theta function 03((, t) defined by the series (17) 

03((, t ) =  E e - - t m 2 e 2 i r c r n r  (4.6) 
m ~ Z  

For real values of the variable (, 03(r t) is a positive real function of period 
1 which reaches its maximum in [0, 1 ] for ( =  0. (To simplify the notation 
we shall write 0((, t) instead of 03((, t) in the rest of this paper). For real ( 
we have 

foO((, t)  d~ = 1 (4.7) 

and 

fo 2 +~,, ,+m2+.. .  +m._,~q (4.8) I 0"(r  t) de = ~ e--,Em~+m~+ ..- +m._,  

m l , m 2 " " m n  1 

Therefore - 

f2 1 (~ ( - 1 ) ' - l ( s - 1 ) ! p ' o )  Os((,t)d( (4.9) ~T~ 

and from (2.11) the excess surface free energy A f" has the expression 

Af ~ -kBTco ~ ( -1)~  ~(2P)s;j  = o %  t) d~ 
s=l S 

(4.10) 
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When 12p0(0, t)[ <1  the series in (4.10) is absolutely summable for 
e [0, 1] and we get the final result 

A f  s = - k B T ~ o  ~ ln[1 + 2pO(~, t)] d~ (4.11) 

By analytic continuation we assume that this is the correct result for any 
value of 2, p, and ~o. Note that A f  ~ has a constant negative sign and that 
we have now two independent dimensionless parameters 2p and t = lgp/r 
(Remember that 2 has the dimension of an area while )~ before had the 
dimension of a length). From A f  s we get the average number of adsorbed 
particles per site 

~ A f  s 
r l  a - = -  - -  f l  - -  _ _  

o) 02 

f •  0(r t) 
= 2p 1 + ,~pO({, ti d~ (4.12) 

As expected this number is always smaller than 1 and saturates to 1 when 
the adsorption becomes infinite (2 ~ oo ). 

4.2. The One-Body Density 

Let us choose the site corresponding to m = 0 as the origin of the 
coordinates (x, y). In order to calculate the one-body density of the non- 
adsorbed particles p*(r~) (Eq. (2.15)) we need to compute the n-body 
truncated correlation functions p(~'r)(r~,R,,,~,...,R,~o_~). The n points 
( r l ,  Rm, ..... Rm,_~ ) are not aligned anymore but they form a triangle and 
the explicit calculation is still feasible. We find 

T ~ l ) = ( _ l ) S s ! p S + l e  2,~o2(x~+y~l ~ e '[m~+(ml--m2)2+'" +(ms ~ m,)2+m~] 

m l  " "  �9 m s  

x e 2ty~~ +ms) cos[2tcoxl (m I _ ms)] (4.13) 

It is convenient to represent rl by the complex number zl = x l  + iyl.  After 
some variable changes among the mi we get 

T~1)=(_l)Ss!pS+le-~pbz~12 ~ e--,Em~+,~+'-" +m~+(m~+m2+" +ms)21 

m l  " "  �9 m s  

x cos[2 to ) (mlz  1 + rnsz*)] (4.14) 
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We now consider the theta function of second order F(~, z~, t) defined by 

f (~,z l ,  t)=-~ 0 ~ + - - z l ,  t 0 ~ + - - z l , t  

+ 0 ~ - - - z l ,  t 0 r  z* , t  (4.15) 
g 

Clearly F(~, z~, t) is real for real ~. Using the definition (4.6) of 0(~, t) we 
get 

0s 1((, t) F((, zl, t) d~ 

~, e-t[m~+m2+ ' +-,~ + {m, +,,2+ - +m~)21COS[20)t(rn,zl + msz~')] 
m l , m  2 � 9  m s 

(4.16) 

Thus 

= ( -- 1) s s! p~+ le-~Plz'12 fo 

and from (2.15) we get 

p*(r l )=p+pe  -~pjz'12 ~, ( - -1) ' (2plSfo0"  l ( r162 , t) d~ 
S = I  

0 s-  1(~, t) F(r zl, t) d~ (4.17) 

(4.18) 

Again, when 2p0(0, t ) <  1, the series in (4.18) is absolutely summable for 
e [0, 1 ] and we obtain the final result 

p*(rl)  - p  = -,~p2e-~Plql2 ~1 F(C, t) 
~o 1 + 2pO(~, t) d~ (4.19) 

which can be extended by analytic continuation to other values of 2, p, 
and o. 

We can check at once the relation (2.17) since F(~, 0, t ) =  02(~, t) and 
from (.4.15) we have the expected symmetry 

p(x,, -Y l )  = P( -X l ,  Yl) = p(x,, y,) (4.20) 

We also expect p*(rl)  to be a periodic function in Yl with period 1/o. This 
is shown in the Appendix together with the electroneutrality relation (2.19). 

Since F(~, zl, t) is a theta function of second order, we can use the 
addition formulas for 0 functions (~7) to find another integral representation 

822/44/1-2-12  
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of p*(r~) which has the nice feature of separating the variable xl and Yl. 
Consider the theta function 01(~, t) defined by 

01(5,  l )= --i Z ( -l)me-(m+l/2)2te(2m+l)~i; (4.21) 
mE~ 

We have the following addition formula aT) 

02(0, t) 0(( + r/, t) 0(( - r/, t) = 02((, t) 02(r/, t) + 02(~, t) 02(~/, t) (4.22) 

Thus (4.15) can be rewritten as 

F({, zl, t ) =  
1 1 202(0, t){02{ it~ t) 

~---Xl ,  t +02 ---x~, t 
7~ 7~ 

+o t, ,t ,t  OXl )1} , t (4.23) 
7Z 

and we have 

2p2 e-~p{x~ + Y~) 
p * ( r l ) - p =  202(0, t) 

x 02 i rc ~ ' 
y l ,  t 1 + 2p0((, t) d~ 

/ 

(4.24) 

This representation is convenient for numerical computation, and in Fig. l 
we have drawn up the normalized density profile p*(rl)/p as a function of 
Xl for some values of Yl and for 2=10 ,  (o= 1 (the unit length if 
a=(np)-m), p*(x~, Yl) approaches the background density p like a 
gaussian when xl ~ +Go for fixed y~. 

4.3. The Pair Correlation Function for the Adsorbed Particles 

The calculation of the two-body correlation function pr(r l ,  r2) as 
given by (2.20) and (2.21) is very tedious and we shall explicitly calculate 
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l j~ LJl )/J~ 

,15 .................... 

I I I I J ~  1 2 3 X I 
Fig_ 1. The density profile p*(x~, y~)/p near a Iine of adsorption sites; 2 =  t0 and o3 =�89 (the 

unit length is a = (~p)-1/2). 

only Rr(R,,,, R,~2), when the two particles are adsorbed. (The complete 
expression of p*(r~, r2) is given in Section 4.4 in the limit of continuous 
adsorption. ) 

In the thermodynamic limit RT(Rm,, R,~ 2) depends only on the dis- 
tance y = (1/col(mr- ms) so we take the two particles located, respectively, 
at R0 (the origin) and Rm. 

In computing the n-body truncated correlation functions 
p(0S+2'r)(R0, Rm, Rm~, Rm2,,.., Rm,)  there is some complication due to the 
fact that we must count separately each cycle {Om~,m~mz, m2m3,... , 
m,m, mmi+l"'" ms tm,} according to the position of m. 

For even s (s = 2p) we find 

T~ 21- Z P(oS+2"r)(Ro, Rm, Rm~"'Rm,)=(-1)~+12P ~+2s! 
m 1 " "ms  

X Z e-t[m2+(m-ml)2+(ml-m2)2+... +rn~] 

m I � 9  m s 

+ e - t [ m ~  + ( m  I - -  m )  2 + ( m  - -  m 2 )  2 + (m2 --  m 3 )  2 + " ' "  + m s  2]  + " ' "  

AV e - t i m 2  + ( m l  --  m2)2 + " ' "  + ( rap_  1 --  m )  2 + ( m  --  rap) 2 + (trip - -  m p +  1) 2 -b " - .  + ms2] 

+ �89 ,[m~+ (.,,~-m,)2+ - - + (rap--m?+ (,,~--m.+,)'+ (m.+, - -m.+, ) '+  - +m~] 

(4.25) 
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For odd s ( s = 2 p +  1) the factor of the last term in the r.h.s, of (4.25) is 1 
instead of �89 

After some changes of variable among the mi, and noting that we have 

fo O(~, t) e -2i~'< d~ = e -tin2 

and 

rtl I �9  m n 

(4.26) 

e - ' [ " ~  + r.~ + - . -  + . , 2  + ( , .  _ m , -  , ~  . . . . . . .  ) q  

for n > 1 (4.27) 
we get for s = 2p 

T~2)=(-1)'+12p*+2s! e-a'='<O(r O~+*({,t) e-Zi='<d{ 

+ e 2i~'<02(~, t) d~ e 2i~<0~(~, t) d~+ " '  

+ f e-2ircmr 1(r l) d[ e 2i'~'"r P+ ~({, t) d~ (4.28) 

and from (2.21) and (2.22) we obtain 

Rr(m/o) = - -2~2f l  2 ~ (-- 1)~(p)~)~ 
s ~ O  

f , • glL e 2 i z m { o l ( ~ '  t )  (4.29) 

with 
g t = l  V l C p + l  

1 s = 2 p + i  

gP+l= �89 s=2p 

We recognize in (4.29) the expansion of -[2pS~(O(~,t) e-2'=mr 
(1 + 2pO(~, t)) d{] 2 and we obtain finally the simple result 

Rr(m/co)= --[Is 2pO({,t)cos(2=m{) ]2 
1 + 2pO(~, t) d{ (4.30) 

where we have used the fact that 0(~, t) is an even periodic function with 
period 1. 
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We see immediately that (2.23) is satisfied 

2 Rr(O) = --n~ 

and using the Parseval theorem for Fourier series we get 

+~ f~ ;5p202(~, t) 
F~ R~(m/co)  = - [1 +,~oo(~., t ) ]  ~ d~ 

m ~  oo 

(4.31) 

~ g / a  
= 2 - - ~ -  n~ (4.32) 

which is the "compressibility" sum rule (2.28). Since 0(~, t)/[1 + 2pO(~, t)] 
is analytical on the real axis, Rr(m/co) decays faster than any inverse power 
of m when [m] ~ oo. 

4.4.  T h e  L i m i t  o f  C o n t i n u o u s  A d s o r p t i o n  

Although the case of a continuous adsorption on the line could be 
easily solved by the direct method used in Section 2, it is interesting to find 
the solution as a limit of the discrete case when co ~ oo. Consider first the 
series (4.6) which defines 0(~, t). When t~l(co>> l/a) the convergence is 
very slow. However, we can use the Jacobi identity (~v) to transform (4.6) 
into a rapidly convergent series 

~ 0 ( ~ ,  t ) =  ~ (4.33) e - - ( ~ - -  m)2Oz2/t) 

m E  z~ 

Hence 

2pO(~, t) = ),co ~ ~ e -(~ m)2(~2/,) (4.34) 
mEz~ 

and (4.11) can be rewritten as 

Af'= -keT 1 +2co ~ e -Eu-m(~/'/7)12 du (4.35) 
m =  --co 

where we have made the variable change ~ = (xft-/~) u. 
In the limit of continuous adsorption (co ~ ~ ,  2 ~ 0, 2co ~ 2c finite) 

all the gaussian factors exp{-[u-rn(~/x/ /~)]  2} go to zero except those 

corresponding to m = 0  and m = 1 (since ue  [0, r~/,,//-t]). We then break up 
the integral into ~ /2 , /Tdu. . .  +r~/'/; j~/2,/Tdu"" and make the variable 
change u'= u -  ~/,,f~ in the second integral. We find eventually 

x/-p-~ f +~ _u2 
Af s= - k B T  ln[1 + 2c x / ~ e  ]du (4.36) 

- -oo  
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which can be compared to the corresponding result for the semi-infinite 
plasma near a wall (Eq. (3.9)). 

The density of adsorbed particle is 

/ ~ s  

,tcp I +~176 e-U2 du (4.37) 
= ~  _~ l + 2 c x / - ~ e - U  2 

It is instructive to compare this adsorption isotherm to the one given by 
(4.12) (va= na~) in order to see the influence of the periodic structure of 
the adsorption potential. While e) varies it is sensible to keep the product 
2e) constant so that the average of the Boltzmann factor (2.2) over the sites 
remains constant. The variation of va with e) is shown in Fig. 2 for 
2c/a = 2o/a = 1. We see that G(~o) is a monotonic increasing function of o) 
so that 

v,(e)) < G(oo ) (4.38) 

This variation with the density of sites is lost in the usual approximation 
where the real three-dimensional solid-fluid potential is replaced by an 
effective one-dimensional potential varying only in the direction normal to 
the surface. We see, however, from Fig. 2 that V~(O))#Va(O0) as soon as 
e)a -- 1, i.e., the distance between the sites is comparable to the mean inter- 
particle distance. 

Va(oo) 
.2 

.1 

I I 
.5 I ~o 

Fig. 2. The linear density of adsorbed particles as a function of the density of sites co; 
2c=2co=1 (same length unit as Fig. 1). v,(oo) is the result for continuous adsorption 
(co-, ~). 

v~ 
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Let us give also the one- and two-body densities in the continuous 
limit. We have 

(4.39) 
oo e - D-  (~/a) ,/532 

p*(x) = p/x/-~ f~,~ l + 2c x / ~  e-"2 du 

[sl 1 + ~ e-"~ c o s ( ~  uy) clu 
RT(y) = --22P2 -oo 1 + 2c x ~  e-"2 

and, using the direct method of Section 2, 

p*(xl, x2, y )= -pZe-~P(x~ _ x~)2 

We can check easily the "compressibility" sum rule 

+ oo Rr (y  ) d y  ~ _ . ~ 2 p ( 3 / 2 ) N ~  ~ + oo e 2u2 C 
du 

Ova 

(4.40) 

(4.41) 

(4.42) 

The function p*(xl, x2, y) has an oscillating exponential decay when 
lYl ~ oo (Xl and xz fixed) and accordingly all the multipole moments 
vanish. (14) 

4.5. The  L imi t  o f  Externa l  Fixed Charges  

When 2 ~ oe with o) fixed, na ~ 1 and the adsorbed charges can be 
considered as fixed charges creating an external perturbing potential in the 
infinite plasma. This situation is interesting because this external potential 
is two dimensional. All previous work was restricted to a potential varying 
only in one direction (9) or local. (4) 

Since the M charges are fixed, the excess free energy of the system 
should not contain anymore the term - k B T M l n  2. In the thermodynamic 
limit we find from (4.11) 

Af= lira (3fS+kBTcoln;O= - k e r o  ln[0(~, t)] d~ (4.43) 

(The integrand is always defined since 0(~, t) has no real zeros. (17)) 
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Using the product representation of the theta function (~7) 

0(~, t) = f i  (1 - e -2"t) [-I [1 + 2e - , (2" -  1)cos 2n/~ + e- t (4n-2) ]  
n = l  n = l  

we get 

(4.44) 

Af= -knTo9 ln(1 - e  -2"') 
n 1 

+ ln[1 + - 1) cos 2rt~ + e d~ (4.45) 
n = l  

Since t > 0  we have e t(2"-1)<1 and the integral in (4.45) vanishes 
((1/27r) ~2~ ln(r21 + r~ + 2r~r2 cos 0) dO = ln(r~) for r~ > r2). Thus finally 

Af=-kBTo9 ~ l n ( 1 - e  2,~) 
n = l  

t 1 = -kBTco [ ] ~  + n , ( t ) ]  ~>0 (4.46) 

where we have introduced the Dedekind eta function (17) 

rl(t)=e -'112 f i  (1 - -e  -z"') (4.47) 
n = l  

For numerical computation it is convenient to use the Euler pentagonal 
number theorem (17) which yields 

Af = -knT~oln[ +~ ( - 1 ) " e  n(3n--1)t] (4.48) 
n ~  --oo 

For t>>l ( ~ a ~ l )  wehave  

Af ~,, k B Tcoe- 1/(~oa)2 (4.49) 

For t.~ 1 (~oa ~ 1) the series converges very slowly but we can use the 
functional equation (17) 

rl(t) = ~ t  rl(zc2/t) (4.50) 

so that ( + f ) ]  Af=-k~T~o 12 12t b-2 ln(rtlt)+ln ( - 1 ) " e  n(3n 1)rc2/t 

n 

(4.51) 
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For c0a ~ 1 Af reaches its asymptotic behavior 

Af ..~keTe) I~---6 (ooa)2-1n(coa)-~ln2rc ] (4.52) 

The one-body density is readily obtained from (4.19) 

p * ( r ~ ) -  p = -pe ~p(x~ + y~) t) d~ (4.53) 
~(r ) 

4.6. The L imi t  of  t h e  O n e - D i m e n s i o n a l  P lasma 

We now consider the limit p--+ 0, 2 ~ ~ such that the density n~ at 
each site goes to a finite value smaller than one. It is clear that this limit 
corresponds to the case of the one-dimensional plasma which has been 
studied in the past both in the continuous (~8) and in the discrete (~9) version. 

Using again the Jacobi identity (4.33) we rewrite (4.12) as 

n a .~- 

f2 d~ (4.54) 
= 1 + [-E+__m_~o e -2~2/pUr ,2]] 1 

where 
to = {p/27rco 2 ln(2co ~ ) }  ~/2 (4.55) 

and we consider the limit p--, O, 2-~ oo such that to remains finite with 
0<to<�89 

We first break up the integral (4.54) into ~0 d~ + ~0 s0 d~ + f{_ ,0 de. In 

the middle integral, it is easy to see that ~+~-oo e-2'~~162 
when p ~ 0 while the same sum is diverging in the two other integrals. 
Thus n~ ~ 2t o in this limit and we have 0 < n~ < 1 as required. Consider 
now the two-body correlation function Rr(m/o). Using (4.33) in (4.30) we 
have 

(4.56) Rr(m/c~ = - 1 + [ E + ~ _ ~  e-2~~ -1 

and breaking again the integral into the same three parts we get in the 
same limit 

sin2(2rcmto) sin2(nmn~) 
Rr(m/co) ~ 7z2m 2 nZm2 (4.57) 

which is the result of Gaudin. (19) 



178 Rosinberg, Lebowitz, and Blum 

In the continuous case (co ~ oo ) a similar calculation would give 

sin2(r~yva) 
2 (4.58) R r ( y ) = - v ~  2 2 2 

~ y v  a 

which is the result of Dyson. ~ 
These two-body correlation functions have the well-known algebraic 

decay of the two-dimensional Coulomb system near a wall. It is interesting 
to note that in the limit process ( p ~ 0 ,  2 ~  ~ , n ,  finite) the "com- 
pressibility" sum rule (2.28) reduces to the perfect screening sum rule (2.25) 

if', Rv(m/co)=--na (4.59) 
m ~  - - ~  

5. LOCALIZED ADSORPTION ON A WALL ( F - 2 )  

In this last section we give the solution of case (iii) where the line of 
discrete sites coincides with the boundary of the semi-infinite system 
(x0 = 0). For the sake of simplicity we shall only consider the excess free 
energy Af s and the average number of adsorbed particles per site na. 

The n-body distribution functions of the unperturbed finite system are 
still given by Eqs. (4.1) and (4.2) but the distance of the particles to the cir- 
cular wall must be kept to a constant value in the thermodynamic limit. 
Jancovici (4) has computed the one- and two-body distribution functions of 
the semi-infinite system 

2 r'oo e- [~'- (xl/a) .~]2 

p(o2,T)(rl, r2 ) = _p2 e- [(x~- x2)/,~] 2 

] 2 ~ exp{--(  u-xl+x2~2a~f~ ] - - i u y ~ )  (5.1) 

where q~(u) is the error function defined by (3.7). 
Again it is easy to get from (4.1) the expression of the s-body trun- 

cated correlation function when the s particles are located on the sites 
m l ,  m2  ..... ms. We find 

; o ~  o ~(O)=(__l)S l(s__ 1)! p . . . .  E 
ml,m2, . . . ,ms  

e2i./7[uffmi-m2)+u2(m2-m3)+'"+u~(m~ ml)] [~ X dui} (5.2) 
i = 1  
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where 

2 e - u2 
R(.) = ~ i + ~(u) 

For a large system we get, after some variable changes among the m~ 

1 P s~ f ;  ... Z T~~ ( -  1)~ l ( s -  1)! fo Z 
ml,m2,...,ms 1 

(5.3) 

and from (2.11) 

s = l  S OO 

(5.4) 

2 
mt,m2,...,ms 1 

so that 

xe2ix/~[mlut+m2u2+ "'" +ms lUs l - ( m l + m 2 +  ..-q- .... l)Us] H {R(u i )  dui} 
i = l  

and the series 

Consider now the function 

f(m, t) = t ~ R(u) e 2im ,/7 ~ du 
Jo 

K(~, t ) =  ~ f(m,  t) c 2#zm~ (5.7) 
mE z[ 

For real ~, K(~, t) is a real function of period 1 which can be rewritten as 

K(~,t)=--~ R(u) ~ 6 u + - - ( ~ - m )  du 
rn ~ Z N ~  x/ t 

(5.8) 

(5.5) 

K(~'t)=~c/x/t ,~=1 ~ 7 (m-~ )  

= 2 ~ t  ~ e(-n2/t)(m-ff)2 
m ~ l  1 .qm i~)[(Tg/ / ~ ) ( m _ ~ )  ] 

(5.9) 

(5.6) 

xeZi.jTEm~,,+m2u2+ . . .  +m~ lu, ~ (m~+m2+ . . .  +m~_l)~,] [I {R(ui) dui} 
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for 0 < ( <  1. This is a rapidly convergent series when t < 1 (compare to 
(4.33)). 

From the definition (5.7) we have 

I~ K~((, t) d~ = f (ml,  t) f(m2, t)." " f(m~, t) 
m l , m 2 , . . . , m s  

x f o  e 2i~z(ml + m2 + ' "  + ms)~ d~ 

= ~ f(ml,  t)f(m2, t)"" "f(m~_l, t) 
m l , m 2 , . . . , m s  - 1 

•  +m~_t ) , t )  

�9 , .  e 2 i w / ~ [ m l u l + m 2 u 2 +  - . ,  + m  s l U s - l - - ( m t + r n 2 +  . . .  + m s _ l ) U s ]  

• ( I  {R(u,) au,} (5.1o) 
i = 1  

Finally 

s = l  S 

= -k,T~o ln[1 +ZpK(~, t)] d~ (5.11) 

and 

f~ K(~, t) 
na= 2p l + 2pK((, t) d~ (5.12) 

In the limit of continuous adsorption (co ~ ~ ,  Z ~ 0, 20~ ~ 2,) and making 
the variable change u =  z/x//~ ( 1 -  (), we have 

e - u2 

~pK(~, t) -, 2;.~ ~ 1 + ~(u) (5.13) 

so that 

[ A f S ~ - k B T x / ~ ;  ~ In l+22cX/~ l+~b(u) jdu  

and we recover the result obtained in Section 3 (Eq. (3.9)). 

(5.14) 
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A P P E N D I X  

In this appendix we show that p*(rx) given by (4.19) is a periodic 
function in Yl and satisfies the global electroneutrality relation (2.19). 

In order to prove the periodicity of p*(rl)  we shall use the fact that 
0(~, t) is also a quasi-periodic function ~7) 

O @ + ~, t) =e-~ 2i< +tO(~, t) (A1) 

Using (A1) in the definition (4.15) of F(~, z~, t) we get 

F(~, Zl + i/co, t) = e2te4t~y'F(~, Zl, t) (A.2) 

Thus, from (4.19) 

f j  F(~, zl, t) p*(zl + i/o)) - p = -2p2e-2t~2{x~ + (yl + 1/~o)2]e2te4t~oyl 1 + 2p0(~, t) d~ 

= p*(zl) - p (A.3) 

which shows that p*(rl)  is periodic in Yl with period 1/co. 
We now consider the relation (2.19). Using (4.6) we rewrite (4.19) as 

p*(rl) -- p = -)tpZe --~P]zI[2 ~ofl 1 + 2pO(~,d(t) ~ e --t(m~ +m~)e2iZ;(ml + m2) 
ml,m2 

x cos[2cot(mlz 1 + m2z*)] (A.4) 

Then, using the fact that p*(r~) is an even function in Xl 

f [ p * ( r ~ ) -  p]  dr1 = - 2 2 p  2 
2pO( ~, t) 

x ~ e t(m~+m~)e2i~(ml+m2)~ 
ml,m2 

x t ~~ dxle -2'Jx~ cos[-2cot(ml + m2) Xa] 
a0  

f+oo • dyle-Zt~~176 (A.5) 
--oo 
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Since  

f +~ d y l e  2to92y~e2mt(ml--m2)yl __ 1 N ~  e(t/2)(ml--m2)2 

we get,  us ing  the  de f in i t ion  of  t 

(A.6) 

[ p * ( r l )  -- p ]  dr 1 = - 2 p  1 q-}~pO(~, t) ~'  e-t(ml+m2)Ze2inr 
ml ,m2 

= ( - , l p )  1 + ,~p0(~, t) d~ (a.7)  

which  is the  r e q u i r e d  result .  
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